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Abstract

This paper presents an automatic road sign detection and recognition system that is based

on a computational model of human visual recognition processing. Road signs are typically

placed either by the roadside or above roads. They provide important information for guiding,

warning, or regulating the behaviors drivers in order to make driving safer and easier. The

proposed recognition system is motivated by human recognition processing. The system con-

sists of three major components: sensory, perceptual, and conceptual analyzers. The sensory

analyzer extracts the spatial and temporal information of interest from video sequences.

The extracted information then serves as the input stimuli to a spatiotemporal attentional

(STA) neural network in the perceptual analyzer. If stimulation continues, focuses of attention

will be established in the neural network. Potential features of road signs are then extracted

from the image areas corresponding to the focuses of attention. The extracted features are next

fed into the conceptual analyzer. The conceptual analyzer is composed of two modules: a

category module and an object module. The former uses a configurable adaptive resonance
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theory (CART) neural network to determine the category of the input stimuli, whereas the

later uses a configurable heteroassociative memory (CHAM) neural network to recognize

an object in the determined category of objects. The proposed computational model has been

used to develop a system for automatically detecting and recognizing road signs from sequenc-

es of traffic images. The experimental results revealed both the feasibility of the proposed com-

putational model and the robustness of the developed road sign detection system.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Motivation

The main purpose of driving assistance systems (DAS) is to collect significant in-

formation for drivers in order to reduce their effort in safe driving. Drivers have to

pay attention to various conditions, including vehicle speed and orientation, the dis-

tance between vehicles, passing cars, and potential dangerous or unusual events

ahead. If DAS can collect such information a prior, it will greatly reduce the burden
of driving for drivers and make driving safer and easier.

Driving information mentioned above could be detected by many kinds of devic-

es, such as infrared rays, ultrasonic waves, microwaves, radar, and a computer vision

system. These devices can be utilized to extract various kinds of data from the driv-

ing environments. Computer vision systems, which have the advantage of high-res-

olution, can be employed to detect road borders and obstacles, and recognize road

signs. This kind of device cannot be surpassed because only they can ‘‘see’’ and ‘‘rec-

ognize’’ something during driving without the use extra auxiliary devices such as
magnetic marks.

Road signs are installed to guide, warn, and regulate traffic. They supply informa-

tion to help drivers operate their cars in such a way as to ensure traffic safety. In the

real world, when they get tired, drivers may not always notice road signs. At night,

drivers are easily affected by headlights of on coming vehicles and may miss road

signs. In bad weather, road signs are harder to recognize quickly and correctly. These

situations may lead to traffic accidents and serious injuries. A vision-based road sign

detection and recognition system is thus desirable to catch the attention of a driver to
avoid traffic hazards.

Road signs are designed to attract a driver�s attention with particular colors and

simple geometric shapes. However, the difficulty in recognizing road signs is largely

due to the following reasons:

(1) The colors of road signs, particularly red, may fade after long exposure to the

sun. Moreover, paint may even flake or peel off.
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(2) Air pollution and weather conditions (e.g., rain, fog, shadows, and clouds) may

decrease the visibility of road signs.

(3) Outdoor lighting conditions varying from day to night may affect the colors of

road signs.

(4) Obstacles, such as vehicles, pedestrians, and other road signs, may partially oc-

clude road signs.

(5) Video images of road signs will have motion blur if the camcorder is mounted on
a moving vehicle due to vehicle vibration as well as motion.

1.2. Related work

Vision systems incorporating visual sensing devices have been used in a variety of

applications, such as recognition, classification, detection, tracking, and monitoring.

For the purpose of driver assistance, vision systems have been employed to detect,
recognize, and track objects such as lanes [3,22], roads [5,15,20,24], road signs and

traffic signals [6,30], road conditions (e.g., dry, wet, ice, and snow) [35], obstacles

(e.g., pedestrians, bikes, motorcycles, vehicles, and other intruders) [3–5,18,28], as

well as structures (e.g., tunnels, bridges, and overpasses) [11].

Since no formal definition for a vision-based driver assistance system (VDAS) has

ever been given, any functions, as mentioned above, that contribute to driving safety

can be considered a part of VDAS. To realize these functions, we have proposed a

dynamic visual model (DVM), which is a computational model for visual analysis
based on video sequences. The model primarily inspired by the human visual system

provides an underlying framework in which road sign detection system is developed.

Our DVM bridges some techniques of computer vision and some properties of hu-

man vision. In this study, we design artificial systems with similar properties of nat-

ural systems and hope to improve the understanding of natural process through the

operations of artificial systems. Note that the proposed DVM is a general-purpose

model. Various visual application systems using video sequences as input data will

be developed on the basis of the proposed model.
Recently, many techniques have been developed to detect and recognize road

signs. Pacheco et al. [29] proposed adding special color barcodes under road signs

to help road sign identification for vision-based systems. However, much time re-

sources would be expended to reequip road signs, making this solution not econom-

ical. Aoyagi and Asakura [1] used genetic algorithms to detection road signs from

gray-level video imagery. Unfortunately, because of the limitation of crossover

and mutation operators, optimal solutions are not guaranteed. Lalonde and Li

[23] reported a color indexing approach to identify road signs, but the computation
time increases greatly in complex traffic scenes. Additionally, many other studies

about detecting and recognizing road signs by distance transforms [13], morpholog-

ical methods [17], neural networks [14,16,19,25], and fuzzy reasoning [24] have been

presented.

Researchers attempt to detect and recognize road signs not only in a single image

[8,9,19,31,36], but also in a video sequence [2,7,30,32]. Practically, at any given
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moment road signs may be partially occluded by vehicles, pedestrians, or other

obstacles. Using video sequences, we could preserve useful information from earlier

image frames, such as the number and sizes of road signs, to predict sizes and posi-

tions of road signs in later frames. This information will increase the speed of road

sign detection and the correctness of road sign recognition in later frames. At the

same time, information supplied by the later frames will help with road sign verifi-

cation for earlier frames. In summary, video sequences provide much more useful
information than single images.

Road signs are always placed either beside roads or above lanes. Being intended

to guide, warn, or regulate traffic to make driving safer and easier, they are designed

to attract drivers� attention to provide important information. It is believed that if

the behavior of an automatic road sign recognition system can be patterned after

the human brain, then such a system could ultimately detect and recognize road signs

from video image sequences as correctly and quickly as people do. This paper de-

scribes an automatic road sign detection and recognition system based on a compu-
tational model of human recognition processing. We introduce in Section 2 a

computational model for pattern recognition inspired by human cognitive process-

ing. There are three important neural networks incorporated in the computational

model: spatiotemporal attentional (STA), configurable adaptive resonance theory

(CART), and configurable heteroassociative memory (CHAM). A system based

on the proposed computational model for detecting and recognizing road signs is de-

veloped in Section 3. The feasibility of the proposed computational model and the

robustness of the developed road sign detection and recognition system are explored
in Section 4. Finally, we draw conclusions and address future work in Section 5.
2. Computational model

2.1. Psychological fundamentals

While computers are excellent at computing, they are unhandy in both object de-
tection and pattern recognition. On the other hand, the human brain exhibits impres-

sive powers in detection and recognition, but are not as good as computers in

computational ability. Human detection and recognition is primarily characterized

by two features: parallel processing and distributed representation. In the distributed

representation of information, a subject matter is decomposed into simple concepts,

each of which is encoded by a cognitive unit (a single neuron or a small set of neu-

rons collectively acting as a complex neuron). Furthermore, since a concept may be

shared by several different subjects, a cognitive unit can be involved in representing
many subjects.

In parallel processing, cognitive units can simultaneously process their own re-

ceived stimuli and propagate their outputs to others. Information, which is scattered

everywhere in the cortex, can be interchanged immediately and in parallel through

the connections among cognitive units. By this exchange process, high-level informa-

tion, including abstract concepts, can be constructed and supplied to the brain to
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analyze, thereby allowing humans to understand complex situations, including those

which cannot be worked out by a sequential process. For this reason we designed a

computational framework to model the recognition process of the human brain for

object detection and pattern recognition (see Fig. 1).

Before discussing our computational model, we give a brief description of human

cognition and recognition. According to cognitive psychologists [26], there are hier-

archical levels of information processing involved in cognition and recognition, such
as sensory, perceptual, conceptual, and action levels, as shown in Fig. 2. Considering

the case of vision, light (physical stimuli) absorbed by rods and cones (receptors) is

transformed into electrical signals, which are transmitted to the visual sensation an-

alyzer (the sensory analyzer) located in the primary visual receiving areas of the cor-

tex. The visual sensation analyzer extracts basic features (e.g., edges, lines, and

corners), spatial frequency patterns, as well as the information about color, depth,

and motion from the input signals. The outputs of the visual sensation analyzer

are delivered to the visual analyzer (the perceptual analyzer). The visual analyzer ly-
ing in the visual association areas of the cortex perceives the categories of the input

stimuli (e.g., objects) based on the features detected at the sensory level. Both the

sensed low-level features and the perceived high-level categories are exploited at

the conceptual level to understand the input stimuli. Finally, people take action if

necessary, and the motor system takes care of the details of muscle movements.

All analyzers involved in cognition and recognition have analogous architectures

[21]. Every analyzer contains several layers of neurons, called cognitive units. Cogni-

tive units on the same layer are laterally connected with links which are almost always
inhibitory. Cognitive units on different layers are vertically connected with links

which are excitatory. A vertical link indicates the existence of a particular part-whole

relationship; the synaptic strength of the link specifies the degree of the relationship.

A lateral inhibitory link signifies the existence of a mutually exclusive relationship be-

tween two components; the strength of the link describes the grade of the relationship.

Both links and their strengths are made up solely through learning.

In the above, the parallel processing, distributed representation, hierarchical

analyzers, and layered architecture of the human brain are discussed. Numerous
Fig. 1. A simplified version of human cognitive and recognition processing.
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functions of the brain are brought into being on the basis of the above features. In

Section 2.2, a computational model motivated by human cognitive processing for

road sign detection and recognition is developed.

2.2. Cognitive model

Fig. 2 depicts the proposed computational model. There are three analyzers com-
prising of the model, referred to as sensory, perceptual, and conceptual. The input

data to the model are video sequences, which carry both spatial and temporal infor-

mation. Spatial information sketches the relations (e.g., distance, direction) between

objects in a single image, and temporal information describes the change of objects

(e.g., color, intensity, and position) between successive images. All these kinds of in-

formation are important for correct detection and recognition. First, in the sensory

analyzer, we extract the temporal and spatial information of moving objects from the

input video sequence.
While a vehicle is in motion, everything outside the vehicle appears to be moving.

How can the objects of interest be pulled from a jumble of moving objects? Intuitive-

ly, specific characteristics (regarding shape, color, and texture) of objects can be uti-

lized to distinguish them. In the perceptual analyzer, a voluntary selectivity of

attention is realized by introducing a network called the STA neural network, as well

as a long-term memory (LTM), which preserves the characteristics of the objects of

interest. The information from the LTM will call the attention of the neural network

to the objects of interest when it is being innervated by the stimuli (i.e., the spatial
and temporal information) coming from the sensory analyzer. Then the activations

of the STA neurons are examined. If there is no focus of attention formed over the

neurons, the system repeats the above process. Otherwise, the feature extraction step

is evoked to detect categorical features of the objects within the image areas corre-

sponding to the focuses of attention in the STA neural network.

Human brains first take notice of attractional objects, such as moving objects or

brightly colored objects, and then recognize them from coarse to fine. For example,

when we are driving, road signs become noticeable to us from afar. We may first dis-
tinguish what categories they belong to, such as prohibition signs or guide signs by

their color or shape. Later, when the road signs appear larger, we can recognize their

meaning, such as no right turn, no left turn, and so on. In our computational model,

the classification stage, category perception, is simulated by CART neural network.

The recognition stage, object recognition, is implemented by a CHAM neural net-

work.

The categorical features obtained in the perceptual analyzer serve as the input

stimuli, represented as a supraliminal pattern, to a CART neural network in the con-
ceptual analyzer. Fig. 3 represents the flowchart of a CART neural network. The in-

put supraliminal pattern first initializes the LTM of the CART neural network with

the contents coming from a system memory, called the episodic memory. The con-

figurations of the LTM and the associated components of the neural network have

to be adapted in accordance with the contents. This adaptability of configuration is

referred as the configurable capability of the neural network. Subliminal patterns to
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be matched with the input supraliminal pattern will be retrieved from the LTM, for

which the search space of subliminal patterns is greatly reduced. The supraliminal

pattern is compared with a subliminal pattern, and if they are similar enough, the

class of the supraliminal pattern is regarded as that of the subliminal pattern under

consideration. The CART network then performs a supervised learning through

which the subliminal pattern in the LTM is updated under the guidance of the input

supraliminal pattern. On the other hand, if no subliminal pattern is similar to any
supraliminal pattern, an unsupervised learning, which represents the supraliminal

pattern as a new subliminal pattern in the LTM, is carried out.

After the classification stage, particular object features regarding the special cat-

egory are extracted and fed into a CHAM neural network, which is the recognition

stage in the conceptual analyzer. Similar to the classification stage, the supraliminal

object feature pattern first initializes the LTM of the CHAM network with the con-

tents coming from the episodic memory. If the supraliminal pattern adequately

matches a subliminal pattern, the supraliminal pattern is recognized successfully.
Otherwise, our system is in a new situation and will attempt to learn and memorize

the new experience for future recognition.
3. Road sign detection and recognition system

A system rooted in the proposed computational model for detecting and recogniz-

ing road signs is presented in this section. The system consists of three components:
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sensory, perceptual, and conceptual, corresponding to the three analyzers of the pro-

posed computational model.

3.1. Sensory component

The input data to our system were acquired using a video camcorder (SONY

TRV-900) mounted in the front windshield of a vehicle while driving on freeways.
Since the vehicle�s speed is high (more then 90km/h), we use the interlace mode of

SONY TRV 900 to capture video sequences. In this mode the images are clearer than

in the normal mode and especially useful for analyzing high-speed actions such as

traffic scenes. However, moving objects appear jerky if the image is read/output

about every 1/30s.

In the sensory analyzer of our system, the spatial and temporal information of dy-

namic scenes is extracted from the input video sequences, and noise is filtered out.

The sensory analyzer is a primary analyzer which concerns itself with only local in-
formation. In road sign detection, color is a local feature which can be extracted

from a single pixel. On the other hand, shape is global feature and must be decided

by a neighborhood of pixels.

As mentioned above, road sign detection is very difficult under poor weather con-

ditions because of the influence of constantly varying outdoor illumination. Even

though the actual colors of road signs are initially quite well controlled, the perceived

colors are affected by illumination from light of various colors in their natural set-

tings. Moreover, with the effects of sunlight, the paint on signs often fades with time.
The hue component in HSI (hue, saturation, and intensity) model is invariant to

brightness [33] and shadows. Thus, the hue component is suitable to extract color

features, given the uncertainty of weather and natural and artificial damage to road

signs.

There are one-to-one mappings of sensory analyzers to the pixels of an input

image, and a sensory analyzer processes only the information coming from a single

pixel. First, the hue value, h, of each pixel is calculated by

h ¼
180
p cos�1

1
2
½ðr�gÞþðr�bÞ�

½ðr�gÞ2þðr�bÞðg�bÞ�1=2

n o
if ðg � bÞP 0;

� 180
p cos�1

1
2
½ðr�gÞþðr�bÞ�

½ðr�gÞ2þðr�bÞðg�bÞ�1=2

n o
if ðg � bÞ < 0;

8><
>:

where r, g, and b indicate the red, green, and blue values of the pixel. Then, the sim-

ilarity between h and the stored hue values of particular colors in road signs is cal-

culated. Let {h1,h2, . . . ,hq} be the set all the hue values of particular colors in road

signs which are assumed to be Gaussianly distributed with variance r2. Then the out-

put of the sensory analyzer is the degree of similarity

z ¼ max
k¼1;...;q

ðzkÞ;

where zk ¼ 1ffiffiffiffi
2p

p
r
expððh� hkÞ2=2r2Þ.

Finally, the outputs of sensory analyzers are fed into the perceptual analyzer.

Fig. 4 gives an example showing the result of the sensory analyzers. The input image



Fig. 4. An example of the attention map of the STA neural network. (A) One image of an input video

sequence. (B) Corresponding outputs of the sensory analyzers. (C) Corresponding attention map of the

STA neural network.
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is shown in Fig. 4A. There are two road signs in the traffic scenes: one red and one

blue. The output of the sensory analyzers is shown in Fig. 4B, and the intensities of

the pixels indicate their degrees belonging to road sign colors.

3.2. Perceptual component

There are two major tasks in the perceptual component: attention formation and

feature extraction. The former is finished by a STA neural network, and the latter by

a categorical feature extraction method. These two techniques are introduced in Sec-

tions 3.2.1 and 3.2.2.

3.2.1. STA neural network

Tagare et al. [34] presented a maximum-likelihood strategy to direct the attention
during visual search. This ‘‘attention strategy’’ can reduce the overall computation

by suggesting a promising subregion of the image in which a target object may ap-

pear. The subregion is similar to the focus of attention in which humans are interest-

ed. However, their method works on static images. In our application, input video

sequences are continuous stimuli carrying both spatial and temporal information

of dynamic scenes. The STA neural network is proposed for processing spatial

and temporal information in one construct.

We give only a brief description of the STA neural network in this subsection;
more details can be found in [10]. The STA neural network, as Fig. 5 shows, is struc-

tured as a two-layer network: one for input and one for output. The output layer is

also referred to as the attentional layer. Neurons in this layer are arranged into a 2D

array in which they are connected to one another. These connections are within-layer

(lateral) connections and are almost always inhibitory. There are no synaptic links

among input neurons; they are, however, fully connected to the attentional neurons.

These connections are called between-layer (vertical) connections and are always ex-

citatory.
The input neurons are also organized into a 2D array as are the attentional neu-

rons, and the size of both arrays are the same as that of the input images. Let wij de-

note the weight of the link between attentional neuron ni and input neuron nj. The

weight vector of attentional neuron ni is written as wi = (wi1,wi2, . . . ,wim), where m



Fig. 5. STA neural network.
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is the number of input neurons. The activation of attentional neuron ni due to input

stimuli z (coming from sensory analyzers) is

aiðtÞ ¼ wðaiðt � 1Þ þ Bð�aaiðt � 1Þ þ bAðIvi þ Ili � CnÞÞÞ;

Ivi ¼
Xm
j¼1

wijzj; I li ¼
X

k2Ni;k 6¼i

½uikMðrikÞakðt � 1Þ�;

AðvÞ ¼
v if v > 0;

0 if v6 0;

�

BðvÞ ¼
v if v > 0

cv if v6 0

�
; where 1 > c > 0:

In the above equations, ak is the activation of neuron nk, threshold Cn prevents the
effect due to noise, and a and b are positive parameters. Set Ni indicates the neigh-

boring set of attentional neuron ni; uik is the linking weight between neurons ni and

nk; M(rik) denotes a ‘‘Mexican-hat’’ function, and the parameter rik is the distance

between neurons ni and nk.

The linking weights,wij, between the input and attentional layers are defined as

follows. Referring to Fig. 6, let nj be any input neuron and ni be its corresponding

attentional neuron. Assume that a 2D Gaussian G is centered at attentional neuron

ni. Then, the linking strength wkj between input neuron nj and attentional neuron nk
is defined as wkj = G (rki), where rki is the position vector of neuron nk with respect to

neuron ni.



Fig. 6. Weights between input and attentional layers.
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Suppose a point stimulus is applied to an input neuron. Next it innervates the

neurons in the attentional layer. Rather than equally stimulate, the degrees of
innervation associated with attentional neurons are governed by a Gaussian dis-

tribution (see Fig. 6). Due to such a distribution, the point stimulus is spread

out before arriving at the attentional layer. Recall that the lateral interactions

among attentional neurons are dictated by a Mexican-hat function for which

the activations of attentional neurons tend to be clustered. The spreading and

clustering mechanisms of the STA neural network are in a sense analogous to

the morphological operations of dilation and erosion, respectively. The hybrid

of the two mechanisms increases the ability of the system to tolerate imperfect
input data.

The input stimuli of the STA neural network are the outputs of the sensory ana-

lyzers, shown in Fig. 4B. Fig. 4C shows the corresponding attention map of the STA

neural network. The spreading and clustering mechanisms make the focus of atten-

tion obvious, although the input stimuli are faint. Once the focus of attention is de-

veloped, the following subsystems will pay attention to only the area of interest and

ignore the rest of the input pattern. It can significantly reduce the search time of the

following subsystems.

3.2.2. Categorical feature extraction

The purpose of road sign classification is to reduce the search space and increase

the recognition rate. Categorical features utilized to partition road signs into groups

should represent common characteristics of the groups, not the specific ones of road

signs. For example, the red circle regulatory signs may belong to one group, and the

blue rectangular information signs may belong to another. The color and shape fea-

tures of each group should be extracted for classification.
First, create an edge image E from the original stimuli O, the input Z of percep-

tual analyzer, and the attention map M of STA neural network. For each pixel (x,y),

E(x,y) is calculated by
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Eðx; yÞ ¼
jE0ðx; yÞj if Mðx; yÞ > 0 and Zðx; yÞ > Cc;

0 otherwise;

�

where |E0(x,y)| is the absolute edge magnitude of pixel (x,y), and Cc is the similarity
threshold to determinate whether the color of pixel (x,y) has a road sign color. Here,

image E(x,y) represents only the edge information of pixels which may belong to the

road signs, and the other edge information is filtered by this equation.

Second, by combining the color and edge information, we can locate the candi-

date positions of road signs. Let Q contain the candidate positions of road signs.

For each position (x,y),

Qðx; yÞ ¼
1 if Eðx; yÞ > 0 and Zðx; yÞ > 0;

0 otherwise:

�

As mentioned above, road signs are always installed either beside roads or above

lanes, which is where people expect to find them. A pre-attention map is used for

modeling the expectation of the human brain. In the pre-attention map, the places

where we expect road signs to be located have stronger stimuli than others. Now,
we combine this prior information in Q:

P ðx; yÞ ¼
1 if M�ðx; yÞ > 0 and Qðx; yÞ ¼ 1;

0 otherwise;

�

M�ðx; yÞ ¼ minðMðx; yÞ;Mpðx; yÞÞ;
where Mp(x,y) is the pre-attention stimulus of pixel (x,y). Fig. 7 gives an example

to illustrate the effect of the pre-attention map. The original input stimulus is
Fig. 7. Experimental results with and without pre-attention. (A) Original image. (B) Attention map

without pre-attention. (C) Regions containing road sign candidates without pre-attention. (D) Pre-

attention map. (E) Attention map with pre-attention. (F) Regions containing road sign candidates with

pre-attention.
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shown in Fig. 7A, and the pre-attention map is presented in Fig. 7D. Figs. 7B and

E show the attention maps, M and M*, respectively. Compared with M, the atten-

tion map given by M* is more concentrated on the road signs, and noise near the

ground is filtered out. Finally, patterns Q and P are shown in Figs. 7C and F, re-

spectively.

Next, instead of the traditional method of connected components, we use the

complemental connected components technique to detect the road signs. The con-
nected components of the background of P are labeled first and called the back-

ground components. Based on these labeled components, only the connected

components of the foreground, called the foreground components, surrounding

them are of concern. Road signs are always composed of color rims with black/

white interiors. The background components contain the interior parts of road

signs, and the foregrounds contain the rims of the road signs. Therefore, road signs

are located at the place where foreground components surround the background

ones. Fig. 8 shows the difference between these two methods. The traditional meth-
od (Fig. 8A) cannot divide the two connected road signs, while the complemental

method (Fig. 8B) can. In summary, road sign detection is accomplished by these

steps.

After the road sign detection stage, the perceptual analyzer extracts the categor-

ical features input to the conceptual analyzer. The categorical features indicate the

color horizontal projection of the road signs. First, the road sign regions are normal-

ized to N · M pixels. Suppose there are q different road sign colors (e.g., red, green,

blue, orange, and yellow), then the categorical feature vector Fc = (f1, f2, . . . , fq),
where fi = (fi1, fi2, . . . , fiN), i = 1,2, . . . ,q, and fij is the number of pixels which have

the ith color in the jth row.

In the color horizontal projection, all gray pixels, including black and white, are

treated as the same color to eliminate the individual difference among road signs of

the same class. For example, the two warning signs shown in Fig. 9 belong to

the same class (red triangular class). The only way to distinguish them is by the

distribution of black and white pixels. If these two kinds of pixels are treated as

the same color, then the color horizontal projection of the two warning signs should
be similar.
Fig. 8. Results of different connected components methods. (A) Traditional connected components

method. (B) Complemental connected component method.



Fig. 9. Two warning signs.

C.Y. Fang et al. / Computer Vision and Image Understanding 96 (2004) 237–268 251
3.3. Conceptual component

The conceptual component is divided into two modules: a category module and
an object module. The former uses a CART neural network to determine the cate-

gory of the input stimuli. The later uses a CHAM neural network to recognize an

object in a determined category of objects.

3.3.1. Category module

CART neural network. The categorical feature extracted in the perceptual compo-

nent serves as a supraliminal feature to be fed into the CART network in the

conceptual component. The CART network is actually an ART2 neural network
[12] with a CLTM. Fig. 10 depicts the architecture of the ART2 neural network.
Fig. 10. ART2 neural network.
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The LTM of the neural network is embedded in the bidirectional links between the

category (the F2 layer) and the input (the F1 layer) representation fields in the atten-

tional subsystem. Rather than being fixed, the links and the associated components

are reconfigurable. In our proposed computational model, several systems (e.g., road

sign, obstacle, traffic condition, and environmental change detection systems) share a

common storage, referred to as the episodic memory. The subliminal features of the

system under consideration will be loaded from the episodic memory into the LTM
of the neural network. The links and associated components of the LTM have to be

configured accordingly.

The supraliminal feature (the input categorical feature) is fed into the F1 layer of

the neural network. Its output is then used as a reference for recalling a subliminal

feature from the LTM. Next, the selected subliminal feature is matched with the su-

praliminal feature in the F1 layer. The orienting subsystem of the network decides to

accept or reject the subliminal feature based on its degree of match with the supra-

liminal feature. If the subliminal feature is accepted, the class represented by the sub-
liminal feature is regarded as that of the input supraliminal feature. Supervised

learning is then performed to update the subliminal feature in the LTM under the

guidance of the supraliminal feature. On the other hand, if the subliminal feature

is rejected and there are still unselected subliminal features available in the LTM,

the next best subliminal feature is selected and the above process repeats. However,

if no subliminal feature matches the supraliminal feature, it is memorized as a new

subliminal feature and stored in the LTM through an unsupervised learning process.

The episodic memory in our system has to be refreshed with the content of the
LTM of the CART network when the road sign recognition system is terminated.

The latest subliminal features are thus preserved for later uses. Furthermore, the

CART network can be utilized by the other systems.

Fig. 11 shows a classification result of the CART2 network. We scan sixteen road

sign images and extract their categorical features to train and test our system. Sixteen

categorical features of road signs are applied to the CART network. These features

are classified into eight classes so that similar features will be classified into the same

class. Instead of presenting the features, their corresponding road signs are illustrat-
ed in Fig. 11. This result is memorized as the learned experience and used to classify

the subsequent input features.

Object feature extraction. After a road sign has been classified into some specific

class, the object features, which differ from categorical features, should focus on the

distinctions of the road signs of the same class. For example, the road signs shown in

row of Fig. 12A are all regulatory signs, having the same red rim and circular shape.

However, based on the distributions of white and black pixels, these signs represent

various meanings, such as no U-turn, left-turn, or right-turn. The distributions of
white and black pixels are extracted as the object features for the road sign recogni-

tion.

Instead of global thresholding, locally variable thresholding [27] is used to bina-

rize the road sign pattern. In this variable thresholding technique, the input image

is first divided into non-overlapping blocks. For each block, a gray-level histogram

is computed and a least-squares fit of a bimodal Gaussian mixture to the histogram



Fig. 11. Classification result of CART2 neural network. (A) Warning signs. (B) Regulatory signs. (C)

Construction signs. (D) Construction signs. (E) Guide signs. (F) Guide signs in highway. (G) Information

signs in highway. (H) Guide signs in highway.

Fig. 12. Some examples of regulatory signs and their extracted object features. (A) The original road signs.

(B) Their white object features. (C) Their black object features.
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is performed. A threshold value is then determined as the intensity value correspond-

ing to the deepest valley of the fitted curve. Based on these values, a homogenous

region test is conducted for the block under consideration. If the block region is re-

garded as a homogenous area, the determined threshold value is ignored. Finally,

from the threshold values of blocks, the dense threshold values of image pixel are

computed using bilinear interpolation. This method is particularly useful for dealing



254 C.Y. Fang et al. / Computer Vision and Image Understanding 96 (2004) 237–268
with the shadowing problem; for example, to threshold the road signs partially shad-

ed by buildings or trees (especially with their leaves swinging in the breeze). After

thresholding, the road signs are divided into two parts, black and white, shown in

rows of Figs. 12B and C. Both parts are the object features which are fed into the

object module for road sign recognition.

3.3.2. Object module

Associative memory [12] is one of the primary functions of the human brain. For

example, humans can easily associate the face of a friend with that friend�s name, or

a name with a telephone number. Associative memory can be thought of as one kind

of neural network mapping, which is able to compute some functional relationship

between its inputs and outputs. Heteroassociative memory is one form of associative

memory whose input vector and output vector can be selected freely and indepen-

dently of each other. Suppose there are L pairs of vectors, {(z1,m1), (z2,m2), . . . ,
(zL, mL)}, with zi 2 Rm, and mi 2 Rn. A mapping, U, of z to m can be defined as
U(zi) = mi. Heteroassociative memory associates non-equal pairs of vectors (zi „ mi).

Similarly, a recognition system which accepts feature input vectors and outputs the

recognition results can be thought of as a mapping system whose input and output

vectors are different. Moreover, heteroassociative memory is able to tolerate partially

occluding and noise interference. Thus, CHAM is selected to recognize objects in our

system.

The CHAM neural network, shown in Fig. 13, is structured as a two-layer net-

work with one input layer and one output layer. The output layer is a winner-
take-all competitive layer. In the input layer, neurons are arranged into a 2D array,

and there are no within-layer synaptic links among these neurons. However, neurons

on the output layer are interconnected to one another by within-layer connections

and are fully connected to the output neurons by between-layer connections.
Fig. 13. CHAM neural network.
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Between-layer connections are always excitatory, while within-layer connections are

almost always inhibitory.

Suppose that the input layer of the neural network contains m neurons and the

output layer contains n neurons. Let wij denote the weight representing the strength

of the link between output neuron i and input neuron j. The weight vector of neuron

i is written as wi = (wi1,wi2, . . . ,wim). The net input to neuron i on the competitive

layer due to innervation z is computed from

neti ¼ wi � z ¼
Xm
j¼1

wijzj: ð1Þ

The neurons on the competitive layer will compete among themselves, and the
neuron whose weight vector most closely matches the input vector wins. In other

words, the winner is the neuron having the largest activation. Let nc be the winner

after the competition, then

nc ¼ argðmax
i

ðnetiÞÞ: ð2Þ

Finally, the one winner on the competitive layer outputs a one while the rest out-

put zeros.

vi ¼
1 if i ¼ nc;

0 otherwise:

�

Let {H1,H2, . . . ,Hp} be the set of object feature patterns stored in the CHAM, where

Hi = (Hib,Hiw)
T, and i = 1,2, . . . ,p. Patterns Hib and Hiw represent the black and

white feature patterns, respectively, of the ith road sign. If an input object feature

pattern, H, is fed into the CHAM, then the output class carried out by Eqs. (1)

and (2) corresponds to

K ¼ argð min
i¼1;...;p

H�Hik kÞ;

where kH � Hik is the distance between H and Hi.

Fig. 14 shows an example of the regulatory sign recognition. The CHAM is

trained by the set of 31 regulatory signs shown in column (A). The white and black

object features extracted from the training set are shown in columns (B) and (C), re-

spectively. Three test sets are prepared for the test stage. The first test set, shown in

column (D), contains the smoothed images of those signs in column (A) with 5 · 5
neighborhood averaging. Their white and black object features extracted from the

training set are represented in columns (E) and (F), respectively. The second test

set, shown in column (G), is comprised of the regulatory signs corrupted by 20% uni-

formly distributed random noise, and the last one, shown in column (J), includes the

same signs corrupted by 30% noise. All 31 smoothed signs and 46 signs with noise

are recognized correctly.

Fig. 15 gives another example of regulatory sign recognition. The training set

is the same as shown in Fig. 14A but the test patterns (Fig. 15A) are extracted
from real images captured by camcorder. Their white and black object features

are shown in columns (B) and (C), respectively. Column (D) shows the recogni-
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tion results. Although these road signs are imperfect, they are still recognized by

CHAM.

Fig. 16 illustrates an example of warning sign recognition. The CHAM is trained

by the set of 20 warning signs shown in column (A). The patterns in columns (B)–(L)
Fig. 14. An experimental result of regulatory signs recognition. (A) Training set of the regulatory signs.

(B) White object feature of column (A). (C) Black object feature of column (A). (D) Blurred test set. (E)

White object feature of column (D). (F) Black object feature of column (D). (G) Noisy test set. (H) White

object feature of column (G). (I) Black object feature of column (G). (J) Noisy test set. (K) White object

feature of column (J). (L) Black object feature of column (J).
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are generated in the same way as those in Figs. 14B–L. Columns (D), (G), and (K)

are the test sets prepared for the test stage. All 20 smoothed signs and 40 signs with

noise are recognized correctly.

These examples show how to recognize road signs in a single image. However, the

data input to our system are video sequences. We can collect more information dur-

ing several successive image frames to make a better decision. As the road signs on

the roadside get closer to the vehicle, the images of the road signs projected in the
video images continuously increase in size and clarity. While road signs should still
Fig 14. (continued)



Fig. 15. Recognition results of real road sign patterns. (A) Test images captured by camcorder. (B)

Corresponding white object feature of column (A). (C) Corresponding black object feature of column (A).

(D) Their recognition results.
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be very small at first detection, our system may have difficulty recognizing these

small signs. However, such signs still supply valuable information for eliminating im-

possible candidates of road signs and reducing the search space. The more video im-

ages fed into our system, the more information can be used to strengthen our

decision.

Suppose our system initially maintains all the candidates for road signs in

the LTM of the CHAM network, then after processing some of the video
input, the number of candidates, p, will be decreased by using the following

procedure:



Fig. 16. An experimental result of warning sign recognition. (A) Training set of the regulatory signs. (B)

White object feature of column (A). (C) Black object feature of column (A). (D) Blurred test set. (E) White

object feature of column (D). (F) Black object feature of column (D). (G) Noisy test set. (H) White object

feature of column (G). (I) Black object feature of column (G). (J) Noisy test set. (K) White object feature

of column (J). (L) Black object feature of column (J).
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(1) Put all candidates for the road signs in the LTM.

(2) Input the extracted object feature H of an image in a video sequence to the

CHAM network.
(3) For each candidate Hj in the LTM, apply the following rule: If

kH�Hjk > 1
p

Pp
i¼1kH�Hik, then remove the jth candidate from the LTM,

where j = 1,2, . . . ,p.

(4) Repeat steps (2) and (3) until only one candidate is left, and output the candidate

as the recognition result.

This procedure illustrates the recognition process for a road sign. If there are two

or more signs in the image sequence, the recognition process is the same except that
the contents of the LTM should be modified for the different signs.
4. Experimental results and discussion

As mentioned above, the input data to our system were acquired using a video

camcorder mounted in the front windshield of a vehicle while driving on freeways.

Since the vehicle�s speed is high, moving objects appear jerky if the image is read/out-
put about every 1/30s. Fig. 17 shows an example of this situation.

In our experiments, each video sequence was down-sampled to a frame rate of

5Hz before being submitted to the system. Furthermore, each 720 · 480 pixel input

image was reduced to 180 · 120 pixels by uniform sub-sampling. It is well known

that the advantages of sub-sampling include the reduction of processing time, noise,
Fig. 17. Original image captured with camcorder.



Fig. 18. Results of different sub-sampling methods. (A) Result of uniform sub-sampling method.

(B) Result of averaging sub-sampling method.
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as well as image instability. However, we want to emphasize that uniform sub-

sampling is better than averaging. In Figs. 18A and B, the different can easily be

discerned. These two images are derived from Fig. 17, and only uniform sub-sam-

pling will produce clear images in high-speed situations.

4.1. Experimental results

A number of video sequences were collected for experiments with one or two

signs included in each sequence. The first example of the experimental results is

presented in Fig. 19. It shows only part of a video sequence (the seven images in

column (A)). In this sequence, two road signs should be recognized, one is a

speed limit sign and the other is a warning sign. The corresponding attention

maps of the input images, column (A), are shown in column (B). These atten-

tion maps have combined pre-attention information, and thus the focus of atten-

tion is concentrated on where the road signs are located. Column (C) represents
the detection results of the candidate road signs. We frame these road signs with

white boxes. Column (D) shows the contents of the white boxes. They are ex-

tracted from the input image and normalized to 60 · 60 pixels. The normalized

patterns are first input to the CART network for classification and then fed to

the CHAM network for recognition. The recognized results, shown in column

(E), are output only when one candidate is left in each LTM. In this example,

the warning sign is recognized first, and the speed limit sign is recognized three

images later.
Another example of the experimental results is presented in Fig. 20, showing only

five images of a video sequence (column (A)). This sequence includes two speed limit

signs. Column (B) shows the corresponding attention maps for the input images of

column (A); and column (C) gives the detection results of the candidate road signs.

The extracted and normalized patterns (60 · 60 pixels) for road sign recognition are

shown in column (D) and the recognized results in column (E). In this example, the

lower speed limit sign is recognized first, and the upper sign is recognized three

images later.



Fig. 19. Result of road sign detection and recognition. (A) The input video sequence. (B) The

corresponding attention map. (C) The results of road sign detection. (D) The road signs extracted after

category module. (E) The recognition result.
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Fig. 21 shows six more examples of experimental results. In each sequence we se-

lect only one image to represent the whole sequence in this figure. Columns (A) and

(D) are the selected images of the input video sequences, and columns (B) and (E)



Fig. 20. Another experimental result of road sign detection and recognition. (A) The input video

sequence. (B) The corresponding attention map. (C) The results of road sign detection. (D) The road signs

extracted after category module. (E) The recognition result.
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give their detection results. The recognition results are presented in columns (C) and

(F). No matter how many road signs are contained in the sequences, the recognition
results are all correct.

Although most road signs in input images are detected at the detection stage,

there are some missed detections. Missed detection usually occurs when the road

signs are small in the image. These road signs may have no strong rims for detecting

correct connected components. Another reason is that the color on the rim of the

road signs does not match its original color (e.g., affected by colored lighting).

Fig. 22 shows two examples of missed detection. Fig. 22B shows the result

of Fig. 22A. The warning sign is not detected, because its rim is not complete so
as to separate the interior and exterior of the sign. Figs. 22C and D show another

example of missed detection. Since our system integrates the results of several



Fig. 22. Two examples of missed detection. (A) The first input image. (B) The road sign detection result of

(A). (C) The second input image. (D) The road sign detection result of (C).

Fig. 21. Some experimental results of road sign detection and recognition. (A,D) are the input video

sequences. (B,E) Detection results. (C,F) The recognition results.
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successive images to make a decision, a few missed detections in a sequence does not

affect the decision making of our system.

If the speed of a vehicle is very high or the road surface is rough, then vehicle and

camcorder vibration cannot be avoided, and the quality of input video sequences is

reduced. Some patterns extracted from these sequences, shown in Fig. 23A, appear



Fig. 23. Three examples of incorrect recognition. (A) The extracted pattern for recognition. (B) Their

recognition results. (C) The correct answers.
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jerky, although they are detected and classified correctly. However, the recognition

of these patterns may be incorrect. Comparing the incorrect answers (Fig. 23B) with

the correct ones (Fig. 23C) shows that they are similar but not exactly the same. The

incorrect results do not affect the correctness of system�s decision since the decision is

made by integrating several images.

Twenty-one sequences have been tested in our experiment. Most of the classifi-

cation results of the CART neural network are correct (99%), and only 11 frames

(1%) are incorrect. About 85% of extracted road signs can be recognized correctly
in the CHAM neural network. Since our system only outputs a result for each in-

put sequence, this 85% ratio is enough for our system to recognize road signs cor-

rectly.

4.2. Discussion

The CART and CHAM networks should be well trained before being tested. As

mentioned earlier, the training patterns of CART are shown in Fig. 11. These pat-
terns are first normalized to 60 · 60 pixels, and then the categorical feature vectors

(color horizontal projection) are extracted to train the CART network. Although

the patterns in the training set are man-made, they can be used to classify real pat-

terns captured by the camcorder. In our experiments additional patterns are not need

for training the CART network.

For each category stored in the CART networks, a corresponding LTM of the

CHAM network should be trained. The weights in these LTMs are recorded in ep-

isodic memory, and will be moved to the LTM as they are needed. In our experi-
ments, only three categories in Fig. 11 have been trained. They are the regulatory

signs (Fig. 11A), the warning signs (Fig. 11B), and the guide signs (Fig. 11E). The

training sets of regulatory and warning signs are shown in Figs. 14A and 16A, re-

spectively. Similar to the training set of the CART network, these patterns can be

utilized to recognize the real patterns. In our experiments the lower speed limit signs

are included in the set of guide signs. Since the number of training patterns is small,

the training set of guide signs is not shown here.
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Our system is able to detect and recognize road signs at night if the street signs are

illuminated by headlights or street lights. However, if road signs are in dark or the

light is too dim, they may be lost at the detection stage. Our system cannot handle

these conditions.
5. Conclusion and future work

In this paper, a computational model motivated by human cognitive and recog-

nition processing was presented. Based on the proposed model, a road sign detec-

tion and recognition system was developed. The computational model consists of

three analyzers: sensory, perceptual, and conceptual. The sensory analyzer extracts

both spatial and temporal information from dynamic scenes. The spatial informa-

tion calls the attention of the perceptual analyzer to interesting objects, whereas the

temporal information calls attention to moving objects. The STA neural network
involved in the perceptual analyzer realizes both the spatial and temporal attention-

al mechanisms in one construct. The conceptual analyzer based on CART and

CHAM neural networks interprets the focuses of attention formed in the STA net-

work.

The road sign recognition system is not the only subsystem in vision-based DAS.

There are several other subsystems which perform road detection, obstacle recogni-

tion, and environmental change detection, etc. Developing and integrating these sub-

systems to collect significant information in driving environments is very important
for improving traffic safety. We hope the proposed computational model is helpful

for designing various subsystems for functions such as the detection and recognition

of lanes, traffic signals, weaving intersections, obstacles, as well as road and weather

conditions. Moreover, other applications to event detection and recognition can also

be accomplished with this model by extracting different kinds of features.
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